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Abstract

The presence of outliers in a dataset can substantially bias the results of statistical analyses. In
general, micro edits are often performed manually on all records to correct for outliers. A set
of constraints and decision rules is used to simplify the editing process. However, agricultural
data collected through repeated surveys are characterized by complex relationships that make
revision and vetting challenging. Therefore, maintaining high data-quality standards is not sus-
tainable in short timeframes. The United States Department of Agriculture’s (USDA’s) National
Agricultural Statistics Service (NASS) has partially automated its editing process to improve
the accuracy of final estimates. NASS has investigated several methods to modernize its anomaly
detection system because simple decision rules may not detect anomalies that break linear rela-
tionships. In this article, a computationally efficient method that identifies format-inconsistent,
historical, tail, and relational anomalies at the data-entry level is introduced. Four separate
scores (i.e., one for each anomaly type) are computed for all nonmissing values in a dataset.
A distribution-free method motivated by the Bienaymé-Chebyshev’s inequality is used for scor-
ing the data entries. Fuzzy logic is then considered for combining four individual scores into one
final score to determine the outliers. The performance of the proposed approach is illustrated
with an application to NASS survey data.

Keywords agricultural data; Bienaymé-Chebyshev’s inequality; cellwise outliers; fuzzy logic;
outlier detection; statistical analysis

1 Introduction
Statistical analyses of a dataset with outliers can be biased. There is an extensive literature
on how to mitigate outliers when conducting data analyses. For instance, developing robust
estimators can down-weight the contribution of outliers on final estimates (Huber and Ronchetti,
1981). Alternatively, identification of anomalous records before the start of statistical analyses
can lead to either their removal (Stigler, 1973) or their correction through editing procedures (De
Waal et al., 2011). In general, correcting anomalous values can improve the overall accuracy and
precision of final estimates.

To maintain high-quality data standards, micro edits are manually performed for each
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record using auxiliary information. These operations can be lengthy even when using automated
screening procedures based on simple constraints and decision rules. Further challenges are also
presented by the nature of the data. For example, agricultural data acquired through repeated
surveys are often characterized by complex relationships, which limit the efficacy of rule-based
systems.

The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics
Service (NASS) has partially automated the review and vetting of the information acquired
through surveys. The current system quickly detects anomalies using decision rules designed by
agricultural experts. However, these rules are static and tend to point out extreme values and
ignore potential relationships with other variables. Therefore, NASS has investigated the use of
a data-driven methodology to improve its anomaly detection system.

The classical view on outlier detection is based on a contamination model at the record
level (Huber and Ronchetti, 1981). A new perspective on outliers explores anomalies in the
cells (entries) of the data matrix (or tabular dataset). Cellwise outliers occur when an individual
cell substantially deviates from its “standard” behavior. This perspective implies that the con-
tamination rate can exceed the classical 0.5 breakdown point, which is the proportion of anoma-
lous values that can invalidate the analysis if introduced in the dataset (Alqallaf et al., 2009).
Traditional estimators cannot be used when the contamination happens within records (i.e., at
the entry/cell level; Agostinelli et al., 2015). Overall, cellwise-outlier detection methods are more
informative than traditional record-level algorithms.

Most cellwise detection procedures have been developed under the assumption of multivari-
ate normality (e.g., see Raymaekers and Rousseeuw, 2019), which is unsuitable for agricultural
survey data. The literature suggests a few outlier-detection techniques for data that are not nor-
mally distributed. For example, Filzmoser and Gregorich (2020) proposed a multivariate method
for spatial compositional data. However, this approach does not account for stratified samples
and is not applicable to generic NASS data (Miller et al., 2010). In general, distribution-free
methods should be preferred for avoiding too stringent assumptions.

NASS collects nonnegative data often characterized by zero-inflation. Observations of zero
are often associated with farms that do not produce specific commodities. Also, missing values
due to item nonresponse are common in NASS survey data. Agostinelli et al. (2015) overlooked
the mechanisms of data missingness when identifying cellwise outliers. These mechanisms are of
three different types, i.e., missing completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR) as suggested by Rubin (1976). The type of missingness
is important when conducting any inference from the data. Raymaekers and Rousseeuw (2019)
proposed a detection-imputation approach like the Estimation-Maximization (EM) algorithm,
which handles missing values when correcting the anomalies. This approach, however, fails to
provide suitable results when more than 50% of the entries are missing for either a record or a
variable.

The cellHandler method (Raymaekers and Rousseeuw, 2019) and the Detect-Deviating-
Cells (DDC) method (Rousseeuw and Van den Bossche, 2018) have been developed to account
for the correlation structures of high-dimensional genetic datasets. The DDC approach is one of
the first methods devoted to the detection of cellwise outliers. In particular, this approach starts
by standardizing the data and then flags the anomalous cells using the information available
in individual columns (i.e., via univariate distribution-tail analysis). Each data cell of a given
record is then predicted based on the other unflagged cells that are correlated with the cell
in question. Finally, a cell is considered an outlier if its observed value (assumed to follow a
Gaussian distribution) deviates significantly from its predicted value.
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To the best of the authors’ knowledge, state-of-the-art methods on cellwise outlier detection
do not take advantage of Previously Reported Data (PRD) to assess irregular departures from
historical trends. PRD can enhance the outlier detection on data collected through longitudinal
studies or repeated surveys, such as those conducted by government agencies or other national
and international institutions. Furthermore, the current statistical literature does not include a
distribution-free method to detect cellwise outliers.

In this article, a new method of identifying cellwise outliers is proposed. As is the case with
the DDC, the approach accounts for the correlation structure arising from high-dimensional data,
but it is applied to the full dataset, even when the correlation structure is sparse. A distribution-
free approach is developed, and PRD is used, when available.

In addition, in the new approach, fuzzy logic is used to detect cellwise outliers resulting
from different types of anomalies. Four types of cellwise contamination are typically observed in
NASS survey data: 1) bit-flip errors (i.e., changes of a few binary values from zero to one or vice
versa due to cosmic rays; O’Gorman, 1994), 2) historical anomalies (i.e., large deviations from
PRD), 3) distribution-tail anomalies (i.e., univariate outliers), and 4) relational anomalies (i.e.,
deviations from typical multivariate relationships). These four types have been considered when
developing the proposed algorithm because the DDC does not check for bit-flip errors. Four
separate scores (i.e., one for each contamination type) are computed for all nonmissing values
in a dataset. Chebyshev’s inequality (Tchebichef, 1867) and its robust extension (Bienaymé,
1867) are used for scoring the data entries without imposing distributional assumptions. The
four scores are then combined into one final score to determine the anomalous entries.

The remaining sections are organized as follows. Section 2 describes the four types of con-
tamination and introduces the methodological background to identify cellwise outliers. Numeri-
cal aspects to achieve high-performance computing are addressed in Section 3. Section 4 provides
a simulation study where the anomalies are randomly introduced on NASS survey data. Sec-
tion 5 further illustrates the application of the proposed methodology using ground-truth labels
from metadata on manual edits. The results from this application illustrate the improvements of
the proposed method when compared to the DDC method implemented in the R-package cell-
Wise (Raymaekers et al., 2023). Concluding remarks are given in Section 6.

2 Methods
Consider a continuous random variable X with an arbitrary distribution FX(·). No assumption
is made about analytical expression of FX(·). It is just assumed that FX(·) has finite central
absolute moments, symbolically represented by

E
[|X − μ|δ] =

∫
R

|x − μ|δdFX(x) < ∞, (1)

where μ denotes the location parameter of X, and the scalar δ � 1 represents the order of the
moments. Location estimates, for a given δ, are obtained by minimizing (1) with respect to μ.
The median of a data vector x is the solution denoted by μ̂1 that minimizes the expectation in (1)
when δ = 1. Also, the mean of x is the solution denoted by μ̂2 that minimizes the expectation
in (1) when δ = 2. The expectation in (1) is known as the mean absolute error (MAE) when δ = 1,
and the mean squared error (MSE) when δ = 2.

For a given moment of order δ (i.e., μ̂δ) and a given threshold, ε > 0, one can use
the Bienaymé-Chebyshev’s inequality (Chepulis and Shevlyakov, 2020) to compute an upper
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bound (in probability) for deviations of the random variable X from its central moments. The
Bienaymé-Chebyshev’s inequality is formulated as

Pr
(|X − μ̂δ| � ε

)
� ε−δE

[∣∣X − μ̂δ

∣∣δ] , (2)

where the right-hand side is finite for any δ ∈ {1, 2}. For δ = 2, this inequality is equivalent to
the classical Chebyshev’s inequality (Zwillinger, 2018), where

E
[∣∣X − μ̂δ

∣∣δ] = Var[X].

Typical outlier detection methods based on the Chebyshev’s inequality produce a confidence
interval around the mean. In fact, a value is likely classified as an outlier if the probability of the
value being far from the mean more than ε does not exceed ε−2Var[X]. It is also trivial to show
that the probability on the left side of (2) goes to zero as ε → ∞ at a faster rate than o(ε−δ).
If the value of ε is allowed to vary depending on a realization x of the random variable X,
namely ε = g(x), where g : R → R+ ∪ {0} is a generic function with nonnegative codomain, the
inequality (2) could be rewritten as

Pr
(|X − μ̂δ| � g(x)

)
� min

{
1, g(x)−δE

[∣∣X − μ̂δ

∣∣δ]} . (3)

The right side of (3) could be thought of as a measure of regularity (or score) for a given sample.
For the specific choice of g(x) = ∣∣x − μ̂δ

∣∣, the score is defined as

s = min

{
1, |x − μ̂δ|−1E

[∣∣X − μ̂δ

∣∣δ]1/δ
}

∈ [0, 1], (4)

where the power of 1/δ is used to regularize the score across different orders of the moments (e.g.,
when identifying different anomaly types). Large values of s indicate regular data, and small val-
ues indicate anomalous ones. Typically, probabilistic inequalities are not based on distributional
assumptions and hence their application does not require a data transformation. Nonetheless,
link functions can be considered in cases when the support of X is a subset of R. For example, the
logarithm is used for random variables with positive support, or the logit function for random
variables with (0, 1) bounded support. Because NASS collects positive agricultural counts, the
log transformation is considered for the rest of the paper. However, depending on the application
at hand, other link functions might be more appropriate.

NASS often collects data using a stratified sampling design. The population of interest is
divided into K ∈ N homogeneous groups called strata. Each stratum k ∈ {1, . . . , K} consists
of units that share common attributes. A random sample of size nk ∈ N is taken from each
stratum k with sample size proportional to the stratum size (computed with respect to the
whole population size). These subsets of the strata are then pooled to form a random sample.
Notice that stratified sampling designs are complex survey designs, and so the sampling weights
are usually unequal. However, in this article, our attention is primarily on the identification of
anomalies from individual record responses, rather than at aggregated level when considering the
weights. As a result, the consideration of sampling weights is not within the scope of this article.
Stratification is not specifically discussed in the cellwise-outlier literature; however, inferences
by conditioning on strata could result in improved outlier detection due to the data homogeneity
within each stratum.
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Statisticians at NASS encounter four types of cellwise anomalies. A specific algorithm based
on equation (4) is developed to score the data (in a continuous scale from [0, 1]) for each
type of cellwise anomaly. The score notation s[B] is used for bit-flip errors, s[H ] for historical-
anomalies, s[T ] for distribution-tail anomalies, and s[R] for relational anomalies. The four different
scores are combined through fuzzy logic to compute the final score s∗ ∈ [0, 1]. In general, the
proposed method operates with multivariate datasets where the number of records, n, is assumed
to be larger than the number of variables, p.

2.1 Data-Format Anomalies

In sparse datasets, zeros and missing values are usually removed from storage files. Therefore,
nonpositive values that appear in a database would be inconsistent with the data format in
use. Although this type of anomaly is rare, it might occur due to bit-flip errors (O’Gorman,
1994), i.e., when binary corruptions occur in Random Access Memory (RAM). For instance, bi-
nary corruptions can erroneously alter a positive sign to a negative one. Data-format anomalies
are highlighted with binary scores, s

[B]
ij , where subscript i = 1, . . . , n denotes records and sub-

script j = 1, . . . , p denotes variables. These scores are zero if nonpositive values are observed,
and one otherwise. Bit-flip errors can also introduce anomalies that are consistent with the
sparsity format, but these anomalies are identified by the algorithms discussed in the following
subsections.

2.2 Historical Anomalies

The statistical literature suggests quantile-based outlier-detection methods for univariate time
series (Hidiroglou and Berthelot, 1986; Sandqvist, 2016). These methods rely on the construction
of a robust interval often defined by the interquartile range (IQR). However, these approaches
do not perform as one would expect, especially when the differences over time have a leptokur-
tic (i.e., heavy-tailed) distribution. In these cases, when the IQR estimates are often zero, another
solution is needed.

For repeated surveys, historical information is available for units that have participated and
responded to surveys administered in the past. One can predict the current value using available
information through forecasting or filtering. Therefore, at time t ∈ Z, a positive response is an
historical cellwise anomaly if the discrepancy between current, xijt , and predicted value, x̂ij t , is
too large. The differences of current and predicted values on the log scale,

�ijt = log xijt − log x̂ij t ,

are compared for any i = 1, . . . , n and j = 1, . . . , p. These differences are assumed to have
zero median and a finite positive MAE, even under leptokurtic (or heavy-tailed) distributions.
In this article, the predicted value, x̂ij t = xij (t−1), is based on an autoregressive model of order
one (which uses PRD) and with autoregressive parameter equal to one.

When considering PRD, missing values at time t − 1 may result from the sampling process
because not all units in the current sample have participated in a previous survey. Either xijt or
the PRD xij (t−1) would result in NA if a unit appears in two consecutive samples and produces
different commodities at times t and t − 1. Therefore, �ijt will be undefined because one of its
components is undefined (i.e., either log xijt = NA or log xij (t−1) = NA). Positive data entries at
time t associated with these two problematic cases are considered historical regularities with
score one.
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For historical anomalies, the MAE of the finite log-differences is computed under the as-
sumptions that δ = 1 and μ̂1 = 0. However, an alternative measure of variability is preferred
when the log-differences are also zero inflated. For example, for m ∈ N data entries that satisfy
the inequality:

0 < |�ijt | < ∞,

the historical variability can be measured as

σ̂ [H ] =
∑
ij

|�ijt |
h

, (5)

where h < np. Therefore, the historical regularity score, s
[H ]
ij ∈ [0, 1], is computed as

s
[H ]
ij = min

{
1,

σ̂ [H ]

|�ijt |
}

.

Leptokurtic (i.e., heavy-tailed) or zero-inflated distributions with positive kurtosis may not
always characterize the log-differences between two repeated surveys. In the cases when rela-
tively larger variations around the median have been observed over time, such as in thin tail
distributions with positive kurtosis (i.e., platykurtic), the estimator in (5) should be replaced
with the MAE. Furthermore, the MAE is typically estimated for each distinct variable by ac-
counting for the stratification and including the zeros. As a matter of fact, this approach is more
appropriate for longitudinal studies where the sampling units do not change over time. However,
it is impractical in repeated surveys where consecutive appearances of a record are often limited
by the sampling design. In general, the selection of an estimator for σ [H ] depends on the number
of usable data entries needed to produce reliable results.

2.3 Distribution-Tail Anomalies
Survey data within a stratum share similar features that one could use in subsequent analyses
to effectively detect distribution-tail anomalies. Even if the data suffer from excessive skewness,
nonlinear transformations can highlight extreme values on both ends of the distribution. When
studying the anomalies on the tail of a distribution, one can also encounter missing values.
However, the mechanisms producing these types of anomalies are different from those of the
historical anomalies. For example, not all farms produce specific commodities, and the missing
commodities are true zeros, which lead to nonfinite values when transformed. All nonpositive
entries, i.e. xijt � 0, are disregarded from the stratum-level analysis, due to their incompatibility
with the log transformation. These cases are automatically labeled as “regular”, and a score of
one is assigned for compatibility with successive calculations.

Distribution-tail anomalies are identified using an alternative regularity score (yet very
similar to (4) with δ = 1). For each stratum k ∈ {1, . . . , K}, and any variable j ∈ {1, . . . , p},
robust estimates of the location and scale parameters are computed using hjk ∈ N usable val-
ues (where hjk � nk). Here, the notation μ̂1jk represents the median of variable j within stra-
tum k. The following scale estimator was proposed by Hampel (1974) as a robust replacement
for the MAE:

σ̂
[T ]
jk = median| log xijt − log μ̂1jk|,

where the index i ∈ {1, . . . , nk} is used for records within stratum k at time t , and nk denotes
the size of the stratum k. Finally, the distribution-tail regularity score, s

[T ]
ij ∈ [0, 1], is computed
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as

s
[T ]
ij = min

{
1,

σ̂
[T ]
jk

| log xijt − log μ̂1jk|

}
.

2.4 “Relational” Anomalies
Units with multiple item responses could be subject to several relationships among the variables
in a dataset. When these relationships are broken, the items providing invalid information are
considered anomalous. In this article, the term “relational” refers exclusively to the anomalies
that violate linear dependencies between two or among several variables. In the presence of
linear dependency, values of a variable can be estimated as outputs from a linear model where
the values of the other variables are used as inputs. This type of anomaly is usually identified
by robust multivariate standardizations.

When scoring for a “relational” anomaly, missing values need to be imputed. Unlike previous
anomaly types that disregard missing values, relational scores are computed using all entries in
the dataset because matrix-algebra routines require all input data to be finite. Therefore, the
following standardized values at the stratum level are considered:

yij =
{

(log xijt − log μ̂1jk)/σ̂
[T ]
jk , if xijt > 0,

0, if xijt � 0 or missing,

for all i = 1, . . . , n, and j = 1, . . . , p. This approach coincides with the replacement of miss-
ing values with the most suitable stratum-level medians computed before applying any trans-
formation and standardization. Afterwards, these transformed data entries are organized in a
matrix Y ∈ R

n×p, where the columns represent p noncollinear variables. This assumption allows
for the estimation of linear models formulated as

yij =
∑
��=j

βj�yi� + εij ,

where βj� represents the �-th coefficient of model j ∈ {1, . . . , p}, and εij denotes the error of
model j for the record i ∈ {1, . . . , n}.

Rather than estimating the variance-covariance matrix of Y to rotate the data (as proposed
by Rousseeuw and Van den Bossche, 2018), ordinary least squares (OLS) are performed for
scoring “relational” anomalies based on the MSE criteria (δ = 2). In fact, the OLS are used
to estimate a matrix of model parameters B ∈ R

p×p. Furthermore, the diagonal components
of this matrix are assumed to be fixed at zeros across the regression process, i.e. βjj = 0,
for all j = 1, . . . , p. By introducing an identity matrix Ip of size p × p, the residual matrix is
formulated as E = Y(Ip−B). Parameter estimates β̂j�, for any � �= j , are obtained by minimizing
the MSE of column j in E, for all j = 1, . . . , p. Therefore, optimal residuals are

ε̂ij = yij −
∑
��=j

β̂j�yi�,

for all i = 1, . . . , n, and j = 1, . . . , p. Finally, the “relational” scores are computed as

s
[R]
ij = min

⎧⎨
⎩1,

1

|ε̂ij |

√∑n
�=1 ε̂2

�j

n − 1

⎫⎬
⎭ .
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2.5 Anomaly Score Based on Fuzzy Logic
The four scores (i.e., one for each anomaly type) are combined into a final one to identify the
anomalous cells. The concept of triangular norms (or t-norms) is borrowed from the fuzzy logic
literature (Gupta and Qi, 1991) as a rigorous foundation for the proposed detection algorithm.

A t-norm is a function T : [0, 1] × [0, 1] → [0, 1] that satisfies the following properties for
any z1, z2, z3 ∈ [0, 1]:

T (z1, z2) = T (z2, z1) (commutativity),
T (z1, z2) � T (z1, z3), if z2 � z3 (monotonicity),

T (z1, T (z2, z3)) = T (T (z1, z2), z3) (associativity),
T (z1, 1) = z1 (identity).

The product t-norm, defined as T (z1, z2) = z1z2, can be used recursively to combine the four
anomaly scores into a final one, i.e.

s∗
ij = T

(
s
[H ]
ij , T

(
s
[R]
ij , T

(
s
[T ]
ij , s

[B]
ij

)))
= s

[H ]
ij s

[R]
ij s

[T ]
ij s

[B]
ij .

Remark 1. The outliers resulting from any type of data anomaly can be thought of as a fuzzy
set. Therefore, there is a degree of uncertainty or imprecision described by individual scores for
each data entry to belong either in or out of any outlier-type set. This results in a combination of
complex scenarios when evaluating the outlier status of a given data entry. A fuzzy logic system
allows one to integrate and process uncertainties associated with each type of anomaly. More
details on fuzzy logic and probabilistic inequalities are given in Appendix A.

A single user-based threshold, θ ∈ (0, 1), is provided as the degree of contamination used
to determine cellwise anomalies. Several contamination criteria can be considered to set a rea-
sonable value of θ . For example, θ can depend on either the user expectations or the maxi-
mum number of cells (or entries) that can be manually edited over a feasible timeframe. This
user-based value is successively used to compute the 100θ empirical percentile of the final
scores, i.e. Q̂θ . Lastly, the cellwise anomalies are identified if the inequality s∗

ij < Q̂θ is sat-
isfied, for any i = 1, . . . , n, and j = 1, . . . , p.

3 Computational Aspects
Several algorithms have been developed or reimplemented to accelerate the detection algorithm.
Although the main program can be executed in R, its core functionalities have been coded in C.
Because R is an interpreted language, it is much slower than software developed with more
traditional languages (such as FORTRAN, C, and C++). Unlike R, C programs are translated
into a machine-readable format as a sequence of binary instructions. Furthermore, modern C
compilers can reduce the number of instructions to execute, and they also allow for different types
of parallelization. For example, single-instruction multiple-data (SIMD) operations (Flynn, 1966)
can process several values at once within a single core, while multicore computations are achieved
via the OpenMP library (Dagum and Menon, 1998). Therefore, the required classical routines
for linear algebra and statistics have been reimplemented in C to achieve higher performances
than the libraries provided by the R interface.
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In our approach, quick computation of medians is required for every combination of vari-
able and stratum. In general, this can be time-consuming especially when working with high-
dimensional datasets. We have improved the computational performances of the median algo-
rithm through an iterative procedure that requires O(n) parallelizable operations. The algorithm
starts by finding the minimum and maximum values of a variable. The range is then split into A

bins of equal width. After counting the number of observations in each bin, the algorithm selects
the bin that is more likely to contain the median. At the next iteration, this bin is split further
into A smaller bins that are used for a new set of computations. The algorithm stops when the
width of the bins approaches zero (or when a user-defined maximum number of iterations is
reached). At the end, the median is approximated by the lower bound of the interval provided
by the last selected bin. Instead of using sorting algorithms that often require O(n log n) oper-
ations (Sedgewick, 1978), this technique employs concepts borrowed from ordinary histograms
to accelerate the estimation of the median (see Algorithm 1 in Appendix B).

To reduce the computational burden caused by standard routines adopted for linear regres-
sion, we have developed customized linear algebra functions. Each column of the data matrix Y
is processed in parallel to compute the residual matrix E. This is achieved using yj (i.e., column j

of matrix Y) as the vector associated to a response variable and Y−j (i.e., the matrix resulting
from removing column j from matrix Y) as the covariate matrix. The Gram-Schmidt decompo-
sition (Daniel et al., 1976) of matrix Y−j has been reimplemented, such that Y−j = QR, where
the matrix Q is orthonormal, and the matrix R is an upper triangular matrix. This approach
avoids the estimation of the regression coefficients through the explicit/analytical formulation
of a vector of residuals using the following equation:

êj = QQ�yj ,

where êj corresponds to column j of the residual matrix E. In general, the combination of these
computational techniques allows one to achieve high performances, especially on sophisticated
environments (such as computational clusters or clouds).

Remark 2. We refrained from recalling functions found in external libraries developed by the
scientific community. Thus, we implemented our own code for the Gram-Schmidt decomposition
and embedded it into the function that computes the residuals. Thereby, we gained a substan-
tial time-performance advantage. Only three C libraries were used. The libraries in Windows
were libc.dll, for standard memory-allocation functions; libm.dll, for standard mathemati-
cal functions; and libgomp.dll, for multicore processing. The respective C libraries for Linux or
Mac were named libc.so, libm.so, and libgomp.so. Once the C code was compiled, it could
easily run within other software (such as R, python, or SAS).

4 Simulation Study
To assess the performance of the proposed methodology, we conducted a controlled simulation
study using four national surveys administered by NASS. These national surveys provide a
wide range of different agricultural scenarios (see Table 1 for a short summary). The first two
surveys have been conducted for sheep-and-goat and cattle inventories, and the last two on row-
crop yields and cranberry production. Usually, livestock surveys focus on the herd composition,
while crop surveys collect information on production and yields. Data collected through surveys
are first internally reviewed and vetted, and a Monte Carlo outlier contamination is performed
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Table 1: Description of surveys used to evaluate the proposed methodology.

Survey Survey Total Major inquiries Scenario
date respondent

Sheep and
Goat
Inventory

1/1/2021 10,090 Sheep and/or goat herd
composition (ewes, rams,
lambs, billies, nannies,
kids, etc.)

Many records; two
distinct inventories
of aggregated parts

Cattle
Inventory

1/1/2021 21,154 Cattle herd composition
(cows, bulls, calves, etc.)

Many records; one
inventory of
aggregated parts

Agricultural
Yield

7/1/2021 1,762 Expected yield and acres
of small grain crops (i.e.,
barley, wheat, oats)

Fewer records;
multiple crops

Cranberry
Production

2/1/2021 218 Cranberry acres Very few records;
single crop

next. Therefore, these data are assumed to be complete and correct for each respondent. Surveys
under consideration were administered between 2021 and 2022, and have sample sizes ranging
between 218 and 21,154.

Ideally, the proposed algorithm would be applied to “untouched/raw” data that are being
simultaneously vetted by the data analysts during the collection phase. In fact, the proposed
algorithm identifies potential cell-wise outliers and does not provide predicted values to fully
automate the editing process. In a production environment, data vetting and manual edits are
performed after outlier flags are generated. These procedures often occur in a cycle where the
proposed algorithm runs several times per hour to update the outlier flags using the latest and
most accurate information. In this case, human intervention is meant as a controlling mechanism
to avoid unintended edits that a software would automatically operate on false positive cells.
However, the accuracy of the proposed methodology cannot be fully evaluated using invalidated
raw data. Thus, some anomalous cells have been synthetically introduced in the four datasets
shown in Table 1. This approach allowed us to flag and track the anomalies for the evaluation
of the proposed detection algorithm across different databases using θ = 0.08.

A generative algorithm has been applied to each dataset in Table 1 by randomly replacing
a few cells with anomalous values. Therefore, two distinct datasets have been created for each
survey. The datasets marked as “high” contain anomalous cells that were more likely to be
identified. On the other hand, the datasets marked as “low” contain anomalous cells that were
more difficult to detect. The “high” and “low” distinctions describe the level of dissimilarity
between artificial anomalies and regular data. These datasets are used for studying the ability
of the proposed methodology to distinguish regular values from cellwise outliers.

The generative algorithm used to introduce anomalies in the datasets was composed of three
specific modules synthesizing historical, tail, and “relational” anomalies, respectively. Each mod-
ule randomly selects 5% of the item responses. Half of these were replaced by multiplying the
current values by random factors in (0, 1], and the other half using random factors greater
than one. The random factors were generated from uniform distributions in intervals shown
in Table 2 (more specifically in columns 2 and 3). Shrinking and expansion ranges were ran-
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Table 2: Ranges of the multiplicative factors used to alter the original data for each module
of the generative algorithm for both higher (more obvious) and lower (less obvious) anomalies.
Ranges for up and down multipliers are randomly selected with equal probability.

Anomaly type-level Down multiplier range Up multiplier range

Tail-low 0.90–1.00 1.0–1.1
Historic-low 0.30–0.60 1.3–2.0
Relational-low 0.30–0.60 1.3–2.0
Tail-high 0.20–0.30 2.0–3.0
Historic-high 0.01–0.05 2.0–3.0
Relational-high 0.01–0.05 2.0–3.0

domly selected with equal probability for each combination of anomaly type and dissimilarity
level.

Historical anomalies were introduced by replacing a current value with its historical one mul-
tiplied by a random factor. On the other hand, tail and “relational” anomalies were produced
by multiplying original values with their respective random factors. “Relational” anomalies were
introduced only for the variables with stronger linear relationships (i.e., having a correlation
coefficient larger than 0.8). Even if this third module reduces the number of variables to con-
taminate, the 5% replacement rate has been kept at the same level of the other two modules.
Hence, every record was equally likely to receive a historical, tail, or “relational” anomaly for one
or several of its item responses. Furthermore, bit-flip errors were introduced by the simulation
mechanism in 0.03% of the positive cells by setting the values to zero.

For the relational outliers, the dataset is organized such that each row represents a record,
and each column represents a field (item response). The dataset matrix may have many missing
data, resulting in a sparse matrix. It is natural to have a sparse matrix of data collected from
surveys, especially in the Agricultural Yield Survey that includes multiple crops. The respon-
dents in different states and different strata would only have certain types of crops but not all.
Therefore, about 92% of the values in the Agricultural Yield data matrix are missing.

Several accuracy measures have been computed according to the standards found in the
literature (Heydarian et al., 2022). The confusion matrix is constructed by comparing the clas-
sification results to the ground-truth labels as in a binary classification problem (where the
two classes are outliers and nonoutliers). This 2×2 matrix contains the counts of True Posi-
tives (TP) and True Negatives (TN) in the main diagonal, and False Positives (FP) and False
Negatives (FN) in the off diagonal. TP refers to the number of true outliers correctly classified as
such. TN refers to the number of true regular data (nonoutliers) correctly classified as such. FP
refers to the number of regular data (nonoutliers) incorrectly classified as outliers. FN refers to
the number of outliers incorrectly classified as nonoutliers. The overall accuracy was computed
as the ratio between the number of correct identifications divided by the total number of units:

Overall accuracy = TP + TN
TP + TN + FP + FN

.

The recall statistics were based on the ratios computed by conditioning on the ground truth
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labels (for truly outliers and truly regular data):

Recallout = TP
TP + FN

(Sensitivity),

Recallreg = TN
TN + FP

(Specificity).

The precision statistics are based on ratios computed by conditioning on the labels provided by
the fuzzy logic system proposed in Section 2. It shows the fraction of outlier identifications that
are truly outliers:

Precisionout = TP
TP + FP

,

or the fraction of regular identifications that are truly regular:

Precisionreg = TN
TN + FN

.

The proposed outlier detection methodology has been evaluated for accuracy at the record
level and at the item response level. Table 3 shows the results at the record level, i.e., after the
statistical units have been flagged as outliers for having at least one item response identified as
an anomaly. Table 4 shows the results at the item-response level, where the available data have
been flagged as a cellwise anomaly.

Table 3: The record-level overall accuracy, precision and recall for two labels (i.e., outliers and
nonoutliers) are computed on several synthetic datasets with two contamination settings and
threshold θ = 0.08. Sensitivity varies between 33% and 70%, and specificity varies between 69%
and 96%.

Survey Level Precision Precision Recall Recall Overall
Regular Outlier Regular Outlier Accuracy

Cranberry Low 0.800 0.546 0.908 0.327 0.762
Cranberry High 0.896 0.800 0.959 0.596 0.881
Cattle Low 0.652 0.591 0.732 0.498 0.629
Cattle High 0.766 0.768 0.839 0.675 0.767
Ag. Yield Low 0.821 0.399 0.855 0.340 0.742
Ag. Yield. High 0.875 0.696 0.924 0.567 0.841
Sheep/Goats Low 0.605 0.618 0.693 0.523 0.610
Sheep/Goats High 0.755 0.775 0.817 0.705 0.764

At the record level, the overall accuracy ranges between 0.61 and 0.88, the precision for
detected outliers ranges between 0.40 and 0.80, and the recall of outliers ranges between 0.33
and 0.71. At the item response level, the overall accuracy ranges between 0.87 and 0.93, the
precision for detected outliers ranges between 0.21 and 0.73, and the recall of outliers ranges
between 0.21 and 0.57. Generally, the proposed methodology identifies outliers better at the
record level for the surveys with smaller sample sizes. However, at the item level, the sample
size does not appear to affect the performances, which have been generally better than those
achieved at the record level. Furthermore, the precision for regular statistical units (i.e., for the
records without cellwise outliers) has been larger than 0.6 at the record level, and larger than 0.9
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Table 4: The cell-level overall accuracy, precision and recall for two labels (i.e., outliers and
nonoutliers) are computed on several synthetic datasets with two contamination settings and
threshold θ = 0.08. Sensitivity varies between 21% and 57%, and specificity varies between 93%
and 98%.

Survey Level Precision Precision Recall Recall Overall
Regular Outlier Regular Outlier Accuracy

Cranberry Low 0.900 0.487 0.952 0.300 0.867
Cranberry High 0.948 0.730 0.976 0.551 0.930
Cattle Low 0.932 0.276 0.937 0.262 0.880
Cattle High 0.961 0.609 0.966 0.574 0.933
Ag. Yield Low 0.928 0.272 0.936 0.248 0.876
Ag. Yield High 0.952 0.591 0.964 0.519 0.923
Sheep/Goats Low 0.931 0.214 0.932 0.212 0.874
Sheep/Goats High 0.962 0.537 0.960 0.551 0.928

at the item response level. The recall for regular statistical units has been larger than 0.73 at
the record level, and larger than 0.93 at the item response level. The change in contamination
level (from high to low) has affected more substantially the precision and recall of outliers with
a drop of 20–35%; however, the precision and recall for regular units has remained quite stable
with differences of 5–10%. The overall accuracy has also shown a similar behavior. In fact, the
proposed method has been overall more accurate on datasets with higher contamination levels.

4.1 Proposed Method Compared to DDC

The DDC (Rousseeuw and Van den Bossche, 2018) was the first method developed to detect
cellwise outliers in multivariate datasets by accounting for the correlations among variables.
However, this method does not consider PRD. In fact, the use of these data is a key difference in
the proposed approach. The performances of the two algorithms were compared on two datasets
discussed above for the Agricultural Yields and Cattle Inventory.

Figure 1 shows the overall accuracies of both methods for each available state. All datasets
are split by states because the DDC drops all variables with more than 50% of missing values
by default, and it processes only the few that remain. However, the proposed method is better
suited for sparse matrices and uses all available data entries. The accuracy of the two methods
were compared at the state level. In the Agriculture Yield dataset, the DDC algorithm has not
provided the overall accuracies for six states due to the high level of sparseness. In the Cattle
Inventory dataset, the DDC has not produced results for one state. In contrast, the proposed
algorithm has identified anomalies in all states. Therefore, Figure 1 excludes the states where
the DDC has not detected outliers. The upper left panel (a) was based on the “low” Cattle
Inventory dataset, and the upper right panel (b) was based on the “high” one. The lower left
panel (c) was based on the “low” Agriculture yield dataset, and the lower right panel (d) was
based on the “high” one.

As shown by the graphs, the proposed method has correctly detected more outliers on both
Cattle Inventory datasets and provided uniformly higher accuracies for all states than the DDC
method. For the Agriculture Yield datasets, while both methods have similar accuracies in many
states, the proposed method has outperformed the DDC in about 18 states. These results are
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Figure 1: The state-level overall accuracy are obtained from the proposed method (in blue
triangles) and the Detect-Deviating-Cells (DDC) method (in brown dots) on four synthetic
datasets. The proposed method has correctly identified more cellwise outliers on the Cattle
Inventory data due to a high availability of previously reported data (PRD). However, the two
methods produced comparable results on the Agricultural Yields data due to a low availability
of PRD. The states where the DDC method failed to provide results are excluded from the plots.

reasonable because the percentage of historical outliers in Cattle Inventory datasets is larger
than the percentage in the Agricultural Yield datasets. Therefore, the proposed methodology
detects more outliers because it uses additional information from the PRD.

In addition, the differences of the overall accuracies provided by the two methods in all
states are higher in the “low” datasets than those in “high” datasets. The sum of the differences
between the two methods in all available states for Cattle Inventory dataset is 0.985 for the “low”
dataset and 0.678 for the “high” dataset. The sum of the differences in all available states
for Agriculture Yield dataset is 0.486 for the “low” dataset and 0.339 for the “high” dataset.
Recall that the “high” datasets have anomalous cells that are more likely identified as outliers
and the “low” datasets have anomalous cells that are more difficult to detect. Therefore, the
differences between “low” and “high” datasets demonstrate that the proposed methodology
performs better than the DDC method on the datasets where the outliers are more difficult to
detect.
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5 Illustration on Real Data
The anomalous values in all datasets of the previous section have been synthetically generated.
Although this approach has shown noticeable differences between the performances of the DDC
method and the proposed algorithm, an open question remains. Can the proposed approach
identify real anomalies on “raw” survey data acquired prior to the editing process? Therefore,
we conducted further analyses with ground-truth anomalous data, as identified by agricultural
experts through a manual revision process, to compare the two outlier-detection algorithms.

The data collected during 2022 for the Cattle Inventory have been considered for this
illustration. These data coexist in a relational database with every other survey conducted by
NASS. In this database, the original values from every respondent and all successive edits and
updates are recorded with their respective timestamps. Therefore, it is possible to retrieve and
compare both farmer-reported (pre-edit) and finalized (post-edit) values to identify the data
entries that have been changed by manual revisions. The post-edit data for the 2021 Cattle
Inventory are used as PRD when linked to the 2022 pre-edit data. Once the linkage between the
datasets from these two years is completed, each state is separately processed to compare the
proposed algorithm (with θ = 0.08) to the DDC method.

Figure 2 shows the overall accuracies of both methods for each available state. The proposed
method was substantially more accurate than the DDC method. In fact, it produced accuracies
ranging from 0.76 to 0.91, whereas the DDC produced accuracies between 0.58 and 0.81. The
overall accuracy of the proposed method in all states has been on average 21.9% higher than
the overall accuracy of the DDC method. On average, the output of the proposed method
coincides with the anomalies found through manual edits for 89% of all data entries. Based on
the survey data considered in this study, the proposed method appears to be more accurate for
the identification of cellwise outliers on real data.

From a computational point of view, the DDC is much faster than the proposed algo-
rithm. However, it is important to notice that the DDC drops several variables and it does not

Figure 2: The state-level overall accuracy obtained from the proposed method (in blue triangles)
and the Detect-Deviating-Cells (DDC) method (in brown dots). Ground-truth anomalies in the
cattle data are identified based on nonzero differences between manually edited and nonedited
cell values. The proposed approach has consistently identified correct anomalies with a higher
accuracy than the DDC method.
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account for different sources of data contamination. Both approaches have been implemented
using parallel computing techniques, which are very useful in high-performance computational
environments. In fact, the DDC method has processed each state in under 0.08 seconds and
the proposed algorithm in less than 0.3 seconds. The proposed approach and the DDC method
have, respectively, processed 1,702,069 cells in 4.2 and 1.26 seconds using 64 cores of an AMD
EPYC 7V12 processor at 2.44 GHz and 440 GB of RAM on a Windows-Server-2019 virtual ma-
chine. It is worth mentioning that the code provided as an R package in the supplementary
material can also run on a single-core CPU with less than 4GB of RAM without making further
modifications.

6 Conclusion
A cellwise outlier detection technique based on fuzzy logic to identify four different types of
anomalies was proposed. The first type of cellwise outliers considered in this article consisted
of erroneous data with format inconsistencies. The second type referred to historical anomalies.
The third type was traditionally known as a distribution-tail anomaly. The fourth type of cell-
wise outliers involved breaking of linear relationships among multiple variables. Furthermore,
this article primarily focuses on identifying anomalies within an individual record rather than
at an aggregated level, such as, county or state level. Therefore, sampling weights were not con-
sidered as they are not relevant for the developments in this article. The detection algorithm we
developed for NASS agriculture survey data is general in nature (as described in Section 2) and
can easily be extended to other survey data or even data collected through complete enumera-
tions (such as a census).

The proposed algorithm is based on a distribution-free approach and the assumption that
the first two central absolute moments exist. It can be applied to datasets that potentially suffer
from the presence of cellwise anomalies, skewed distributions (with positive support), missing
values, and multivariate relationships. It effectively copes with sparse and missing data by ac-
counting for zero inflation without removing entire records and/or variables with missing values.
Typically, the algorithm provides informative outputs comprising of 1) a numerical score for each
available entry and 2) a binary identifier (or flag) based on a user-defined percentage of con-
tamination. Alternative procedures to the percentage of contamination, θ , can also be valid (as
discussed in Appendix A). However, it is common to set θ based on historical observations or
reasonable assumptions made by the analysts. For instance, the fifth percentile of the final scores
can be used as a cut-off value (or threshold) that can separate the outliers from regular observa-
tions. Cells with their corresponding final scores smaller than the 100θ percentile are classified
as cellwise outliers. This approach allows for the identification of anomalous entries even in more
extreme scenarios (e.g., when θ = 0.005).

The performance of the proposed algorithm has been illustrated using NASS livestock and
crop survey data with randomly generated anomalies. Our simulation study considered four
different datasets and showed that the algorithm provides accurate and robust results when
detecting cellwise outliers. Moreover, comparisons using real data with PRD illustrate that the
proposed approach has generally higher overall accuracy than the DDC method. Relatively large
datasets (with over 20,000 statistical units) have been processed within 5 seconds using 64 cores
of an AMD EPYC 7V12 Processor at 2.44 GHz and 440 GB of RAM on a virtual machine
with Windows Server 2019 Datacenter. When PRD are not available, the proposed algorithm is
comparable (or even equivalent) to the DDC method. However, as an advantage, our algorithm
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is designed to identify cellwise outliers without dropping records or variables with many missing
values (as it is the case for the DDC algorithm).

Lastly, the use of model-based predictions in lieu of PRD allows for the application of
the proposed algorithm with data collected under different scenarios. For instance, when time
series or longitudinal data are regularly acquired, or other data are collected through complete
enumerations (such as two or more consecutive censuses). Even if this article focused on a
simple time-series model, other models can be used to leverage administrative, structured, or
unstructured data available for the whole or a subset of the surveyed records.

Supplementary Material

A Reasoning on Fuzzy Logic and Probabilistic Inequalities
In traditional logic, a statement can be either true or false. For detecting cellwise outliers, the
statement Gij = “the cell (i, j) is regular” is true if all following statements are true: E[B]

ij = “the
cell (i, j) is not a data-format (or bit-flip) outlier”; E[H ]

ij = “the cell (i, j) is not an historical
outlier”; E[T ]

ij = “the cell (i, j) is not a distribution-tail outlier”; and E[R]
ij = “the cell (i, j) is

not a relational outlier”. Therefore, if at least one of the four statements above is false, the
statement Gij is false. The truthfulness of Gij is determined from the truth table of the E[·]

ij

based on the following logical expression:

Gij = E[H ]
ij ∧ E[R]

ij ∧ E[T ]
ij ∧ E[B]

ij (6)

= ¬
(
¬E[H ]

ij ∨ ¬E[R]
ij ∨ ¬E[T ]

ij ∨ ¬E[B]
ij

)
,

where the symbols ∧, ∨, ¬ represent the logical operators And, Or, and Negation, respectively.
The scores s

[·]
ij ∈ [0, 1] provide a degree of truthfulness for the statements E[·]

ij , where zero and
one indicate if a statement is certainly false or true, respectively. Therefore, (6) is described
using fuzzy logic operators (such as t-norm, t-conorms, and fuzzy complement for And, Or, and
Negation, respectively) that satisfy De Morgan laws. For example, the fuzzy complement, C(z) =
1−z, and the product t-norm, T (z1, z2) = z1z2, can be used to formulate the t-conorm, S(z1, z2) =
1 − (1 − z1)(1 − z2). One can explore the use of different t-norms; however, the product t-norm
consistently provided the most accurate results. The literature provides alternative formulations
of t-norms and conorms that may not satisfy De Morgan laws (Gupta and Qi, 1991). These
alternative formulations are disregarded for the purposes of this study.

Ideally, one would use the cumulative distribution function (CDF) of Xijt , FXijt
(·), to quan-

tify the degree of truthfulness of Gij (see (6)). However, there are two issues with pursuing this
approach. First, each individual cell in the dataset is the only realization available from the
random process associated with that cell. Second, the CDF is unknown. Therefore, univariate or
multivariate analyses of past observations and other records within the same stratum are needed
to “standardize” each cell.

Typically, the Bienaymé-Chebyshev’s inequality is used to identify probabilistic bounds
for Xijt based on the following:

Pr
(|Xijt − μδ| � ε

) = FXijt
(μδ − ε) + 1 − FXijt

(μδ + ε) � ε−δE
[|Xijt − μδ|δ

]
,

where the right-hand side, ε−δE[|Xijt − μδ|δ], is a monotonically decreasing function on ε > 0,
for δ � 1 given that E[|Xijt −μδ|δ] is finite. However, to study the distribution of Xijt , one would
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need several realizations xijtu from U parallel universes, where u = 1, by convention, corresponds
to a value in the dataset, and u ∈ {2, 3, . . .} ⊂ N corresponds to non-accessible values from other
universes. For the selection of ε = g(x), the probability Pr(|Xijt −μδ| � g(x)) depends on g(x)−δ.

If a user decides to operate with g(x) = |x − μδ|ξ−1, where ξ ∈ [1, +∞) is often set to
either 1.5 or 3, then the alternative score

sij t = min

{
1, ξ δ

E
[|Xijt − μδ|δ

]
|xijt − μδ|δ

}1/δ

(7)

is more likely to be one for regular cells and less than one for outliers. When the expression
in (7) is used to determine the truthfulness of the statements E[·]

ij , the statement Gij would be
considered true if

T
(
s
[H ]
ij t , T

(
s
[R]
ij t , T

(
s
[T ]
ij t , s

[B]
ij t

)))
= 1,

and false otherwise. In this case, any t-norm that satisfies the De Morgan laws could be used to
determine the truthfulness of Gij .

B Median Algorithm
The details of the median algorithm developed for implementing the cellwise outlier detection
via fuzzy logic are provided as pseudo-code shown in Algorithm 1. The algorithm takes an
input vector v ∈ R

n, and it returns an approximated median value when one of two stopping
criteria (i.e, error tolerance, η = 10−16, and maximum number of iterations, M = 2,000) are
satisfied.

The algorithm computes the minimum and the maximum values the input vector v. These
two operations can be merged in a single loop iterating over the n components of the input
vector. The maximum and minimum of v partition the observed range of the data into A equal-
width bins, where A ≈ √

n. A bin is used to store the fraction of data falling within it, fα ∈
[0, 1], for any α = 1, . . . , A. The algorithm iterates over the n observations to compute the
fraction of data falling in each bin (i.e., with time complexity O(n)). Then, it identifies the bin
containing the median with at most A iterations over the bins (i.e., with time complexity O(

√
n)

in worst case scenario). These two loops are nested in an outer loop; thus, the time complexity is
proportional to O(n) + O(

√
n) = O(n). Furthermore, the algorithm converges to the solution at

the rate o(n−1/2), and hence, the outer loop requires less iterations as the sample size increases.
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Algorithm 1 Pseudo-code of the proposed median algorithm.
1: η ← 10−16 � Error tolerance (stopping criterion 1)
2: M ← 2000 � Maximum number of iterations (stopping criterion 2)
3: function Median(n ∈ N, v ∈ R

n)
4: if n < 1 then return NAN
5: else if n = 1 then return v1

6: else if n = 2 then return 1
2(v1 + v2)

7: end if
8: A ← 2� 1

2 log2 n� � Compute A histogram bins such that A ≈ √
n

9: u1 ← min(v)

10: u2 ← max(v)

11: m ← 0
12: repeat
13: ρ ← A/(u2 − u1) � Compute the inverted width of each bin
14: f ← 0 � Initialize a frequency vector f = (f1, . . . , fA)� to zero
15: for all i ∈ {1, 2, . . . , n} do � Use atomic instructions if this loop is made parallel
16: α ← �ρ(vi − u1)1{vi � u1}� � Find bin to update
17: α ← α + 1{α = 0} � Fix zero values of α

18: fα ← fα + 1
n

� Update the histogram frequencies
19: end for
20: α ← 2 � Search the bin containing the median
21: while f1 < 1

2 and α � A do
22: f1 ← f1 + fα � Compute cumulative frequencies until they exceed 1

2
23: α ← α + 1 � Track the position of the next bin to process
24: end while
25: α ← α − 2
26: ρ ← 1/ρ � Compute the width of the selected bin
27: u1 ← u1 + αρ � Update the lower bound of the interval containing the median
28: u2 ← u1 + ρ � Update the upper bound of the interval containing the median
29: m ← m + 1 � Update the number of iterations performed
30: until ρ � η or m � M � Stop the loop if either condition is satisfied
31: return u1

32: end function
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